alexa Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Bhavani S, Nagargadde A, Thawani A, Sridhar V, Chandra N

Abstract Share this page

Abstract Unforeseen adverse effects exhibited by drugs contribute heavily to late-phase failure and even withdrawal of marketed drugs. Torsade de pointes (TdP) is one such important adverse effect, which causes cardiac arrhythmia and, in some cases, sudden death, making it crucial for potential drugs to be screened for torsadogenicity. The need to tap the power of computational approaches for the prediction of adverse effects such as TdP is increasingly becoming evident. The availability of screening data including those in organized databases greatly facilitates exploration of newer computational approaches. In this paper, we report the development of a prediction method based on a support machine vector algorithm. The method uses a combination of descriptors, encoding both the type of toxicophore as well as the position of the toxicophore in the drug molecule, thus considering both the pharmacophore and the three-dimensional shape information of the molecule. For delineating toxicophores, a novel pattern-recognition method that utilizes substructures within a molecule has been developed. The results obtained using the hybrid approach have been compared with those available in the literature for the same data set. An improvement in prediction accuracy is clearly seen, with the accuracy reaching up to 97\% in predicting compounds that can cause TdP and 90\% for predicting compounds that do not cause TdP. The generic nature of the method has been demonstrated with four data sets available for carcinogenicity, where prediction accuracies were significantly higher, with a best receiver operating characteristics (ROC) value of 0.81 as against a best ROC value of 0.7 reported in the literature for the same data set. Thus, the method holds promise for wide applicability in toxicity prediction. This article was published in J Chem Inf Model and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords