alexa Suicidal inactivation of the rabbit 15-lipoxygenase by 15S-HpETE is paralleled by covalent modification of active site peptides.


Journal of Cytokine Biology

Author(s): Wiesner R, Suzuki H, Walther M, Yamamoto S, Kuhn H

Abstract Share this page

Abstract Lipoxygenases (LOXs) are multifunctional enzymes that catalyze the oxygenation of polyunsaturated fatty acids to hydroperoxy derivatives; they also convert hydroperoxy fatty acids to epoxy leukotrienes and other secondary products. LOXs undergo suicidal inactivation but the mechanism of this process is still unclear. We investigated the mechanism of suicidal inactivation of the rabbit 15-lipoxygenase by [1-(14)C]-(15S,5Z,8Z,11Z,13E)-15-hydroperoxyeicosa-5,8,11,13-tetraenoic acid (15-HpETE) and observed covalent modification of the enzyme protein. In contrast, nonlipoxygenase proteins (bovine serum albumin and human gamma-globulin) were not significantly modified. Under the conditions of complete enzyme inactivation we found that 1.3 +/- 0.2 moles (n = 10) of inactivator were bound per mole lipoxygenase, and this value did depend neither on the enzyme/inactivator ratio nor on the duration of the inactivation period. Covalent modification required active enzyme protein and proceeded to a similar extent under aerobic and anaerobic conditions. In contrast, [1-(14)C]-(15S,5Z,8Z,11Z,13E)-15-hydroxyeicosa-5,8,11,13-tetraenoic acid (15-HETE), which is no substrate for epoxy-leukotriene formation, did not inactivate the enzyme and protein labeling was minimal. Separation of proteolytic cleavage peptides (Lys-C endoproteinase digestion) by tricine SDS-PAGE and isoelectric focusing in connection with N-terminal amino acid sequencing revealed covalent modification of several active site peptides. These data suggest that 15-lipoxygenase-catalyzed conversion of (15S,5Z,8Z,11Z,13E)-15-hydroperoxyeicosa-5,8,11,13-tetraenoic acid to 14,15-epoxy-leukotriene leads to the formation of reactive intermediate(s), which are covalently linked to the active site. Therefore, this protein modification contributes to suicidal inactivation.
This article was published in Free Radic Biol Med and referenced in Journal of Cytokine Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version