alexa Sulfonylurea receptors, ion channels, and fruit flies.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Boyd AE rd

Abstract Share this page

Abstract Recent studies have identified a high-affinity receptor on the plasma membrane of the beta-cell that is specific for all of the sulfonylureas. The most potent second-generation drugs, glyburide and glipizide, bind to the receptor and trigger insulin release at nanomolar concentrations. The affinity to the receptor-ligand interaction of all sulfonylureas correlates with their potency as insulin secretagogues, further implicating receptor occupancy with signal transduction. These drugs also inhibit the electrical activity of ATP-sensitive K+ channels and K+ efflux through these channels. The channels are also closed by the metabolism of the major insulin secretagogues, glucose and the amino acids, which signal insulin release by increasing the ATP level or the [ATP]-to-[ADP] ratio on the cytoplasmic side of the channel. Based on the channel number and the amount of K+ current they pass, it is possible to calculate that these channels control the resting membrane potential of the beta-cell. Inactivation of the ATP-inhibitable K+ channel results in a fall in the resting membrane potential, cell depolarization, and influx of extracellular Ca2+ through the voltage-dependent Ca2+ channel. The rise in intracellular free Ca2+ level triggers exocytosis. Thus, it is now possible to link either a stimulus from the metabolism of insulin secretagogues or the sulfonylureas to ionic and electrical events that elicit insulin release. These data also suggest that the sulfonylurea receptor or a closely associated protein is an ATP-sensitive K+ channel.
This article was published in Diabetes and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords