alexa Supplier selection: A hybrid model using DEA, decision tree and neural network
Engineering

Engineering

Journal of Telecommunications System & Management

Author(s): Desheng Wu

Abstract Share this page

As the most important responsibility of purchasing management, the problem of vendor evaluation and selection has always received a great deal of attention from practitioners and researchers. This management decision is a challenge due to the complexity and various criteria involved. This paper presents a hybrid model using data envelopment analysis (DEA), decision trees (DT) and neural networks (NNs) to assess supplier performance. The model consists of two modules: Module 1 applies DEA and classifies suppliers into efficient and inefficient clusters based on the resulting efficiency scores. Module 2 utilizes firm performance-related data to train DT, NNs model and apply the trained decision tree model to new suppliers. Our results yield a favorable classification and prediction accuracy rate.

This article was published in Expert Systems with Applications and referenced in Journal of Telecommunications System & Management

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords