alexa Suppressed alloantigen presentation, increased TNF-alpha, IL-1, IL-1Ra, IL-10, and modulation of TNF-R in UV-irradiated human skin.


Journal of Arthritis

Author(s): Barr RM, Walker SL, Tsang W, Harrison GI, Ettehadi P,

Abstract Share this page

Abstract Cytokines induced in skin by ultraviolet radiation cause local and systemic immunosuppression. Tumor necrosis factor alpha, interleukin-1, and interleukin-10 are key mediators in the mouse, but less is known about cytokine synthesis and function in ultraviolet-irradiated human skin. We exposed human skin to 3 minimal erythema doses of solar-simulated radiation and raised suction blisters at intervals to 72 h. Alloantigen presentation was suppressed in a mixed epidermal cell-lymphocyte reaction by 69\% from 4 to 15 h post-solar-simulated radiation, but recovered to control values by 24 h. Tumor necrosis factor alpha was raised at 4 h after solar-simulated radiation, reached a maximum 8-fold increase at 15 h, then rapidly declined to control values. Interleukin-1alpha and interleukin-1beta were first increased at 15 h, and remained raised to 72 h, although interleukin-1beta declined from its 15 h maximum. Interleukin-10 increased a maximum 2-fold between 15 and 24 h, coincident with recovery of mixed epidermal cell-lymphocyte reaction responses and downregulation of tumor necrosis factor alpha and interleukin-1beta. Solar-simulated radiation differentially affected soluble tumor necrosis factor alpha receptors; soluble tumor necrosis factor-RI was suppressed 33\% at 8-15 h whereas soluble tumor necrosis factor-RII increased 2-fold from 15 to 48 h. Interleukin-1 receptor antagonist was raised at all times post-irradiation. Interleukin-12 was not detectable in control or irradiated skin. These kinetics suggest the tumor necrosis factor alpha network has primary importance in ultraviolet-damaged human skin. The small increase in interleukin-10 implies that 3 minimal erythema doses of solar-simulated radiation is the threshold dose for its induction and local, rather than systemic, functions for interleukin-10 in immunosuppression and regulation of other cytokines. This article was published in J Invest Dermatol and referenced in Journal of Arthritis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version