alexa Supramaximal exercise mobilizes hematopoietic progenitors and reticulocytes in athletes.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Morici G, Zangla D, Santoro A, Pelosi E, Petrucci E,

Abstract Share this page

Abstract Marathon runners show increased circulating CD34+ cell counts and postexercise release of interleukin-6 (IL-6), granulocyte-colony stimulating factor (G-CSF) and flt3-ligand (Bonsignore MR, Morici G, Santoro A, Pegano M, Cascio L, Bonnano A, Abate P, Mirabella F, Profita M, Insalaco G, Gioia M, Vignola AM, Majolino I, Testa U, and Hogg JC. J Appl Physiol 93: 1691-1697, 2002). In the present study we hypothesized that supramaximal ("all-out") exercise may acutely affect circulating progenitors and reticulocytes and investigated possible mechanisms involved. Progenitor release was measured by flow cytometry (n = 20) and clonogenic assays (n = 6) in 20 young competitive rowers (13 M, 7 F, age +/- SD: 17.1 +/- 2.1 yr, peak O2 consumption: 56.5 +/- 11.4 ml.min(-1).kg(-1)) at rest and shortly after 1,000 m "all-out." Release of reticulocytes, cortisol, muscle enzymes, neutrophil elastase, and several cytokines/growth factors was measured. Supramaximal exercise doubled circulating CD34+ cells (rest: 7.6 +/- 3.0, all-out: 16.3 +/- 9.1 cells/mul, P < 0.001), and increased immature reticulocyte fractions; AC133+ cells doubled, suggesting release of angiogenetic precursors. Erythrocyte burst forming units and colony forming units for granulocytes-monocytes and all blood series increased postexercise by 3.4-, 5.5-, and 4.8-fold, respectively (P < 0.01 for all). All-out rowing acutely increased plasma cortisol, neutrophil elastase, flt3-ligand, hepatocyte growth factor, VEGF, and transforming growth factor-beta1, and decreased erythropoietin; K-ligand, stromal-derived factor-1, IL-6, and G-CSF were unchanged. Therefore, all-out exercise is a physiological stimulus for progenitor release in athletes. Release of reticulocytes and proangiogenetic cells and mediators suggests tissue hypoxia as possibly involved in progenitor mobilization. This article was published in Am J Physiol Regul Integr Comp Physiol and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords