alexa Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering.


Journal of Biomimetics Biomaterials and Tissue Engineering

Author(s): Chen JP, Su CH

Abstract Share this page

Abstract Electrospun poly(lactic acid) (PLLA) nanofibers (NF) were modified with cationized gelatin (CG) to improve their compatibility with chondrocytes and to show in vitro and in vivo the potential applications of CG-grafted PLLA nanofibrous membranes (CG-PLLA NFM) as a cartilage tissue engineering scaffold. PLLA NF were first treated with oxygen plasma to introduce -COOH groups on the surface, followed by covalent grafting of CG molecules onto the fiber surface, using water-soluble carbodiimide as the coupling agent. The effects of CG grafting and properties of NFM were characterized by scanning electron microscopy (SEM), transmission electron microscopy, thermogravimetric analysis, atomic force microscope, X-ray photoelectron spectra and Fourier transform infrared spectroscopy. In vitro studies indicated that CG-PLLA NFM could enhance viability, proliferation and differentiation of rabbit articular chondrocytes compared with pristine PLLA NFM. SEM observations of the cell-scaffold construct confirmed the tight attachment of chondrocytes to CG-PLLA NF and in-growth of cells into the interior of the membrane with proper maintenance of cell morphology. Improved cell differentiation in CG-PLLA NFM was confirmed by enhanced glycoaminoglycan and collagen secretion, histological analysis and reverse transcription-polymerase chain reaction studies, which showed that the cells were able to maintain the expression of characteristic markers (collagen II, aggregan and SOX 9) of chondrocytes. Subcutaneous implantation of the cell-scaffold constructs with autologous chondrocytes also confirmed the formation of ectopic cartilage tissues after 28 days by histological examination and immunostaining. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. This article was published in Acta Biomater and referenced in Journal of Biomimetics Biomaterials and Tissue Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version