alexa Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Zhang Y, Kohler N, Zhang M

Abstract Share this page

Abstract Superparamagnetic magnetite nanoparticles were surface-modified with poly (ethylene glycol) (PEG) and folic acid, respectively, to improve their intracellular uptake and ability to target specific cells. PEG and folic acid were successfully immobilized on the surfaces of magnetite nanoparticles and characterized using fourier transform infrared spectra. The nanoparticle internalization into mouse macrophage (RAW 264.7) and human breast cancer (BT20) cells was visualized using both fluorescence and confocal microscopy, and quantified by inductively coupled plasma emission spectroscopy (ICP). After the cells were cultured for 48 h in the medium containing the nanoparticles modified with PEG or folic acid, the results of fluorescence and confocal microscopy showed that the nanoparticles were internalized into the cells. The ICP measurements indicated that the uptake amount of PEG-modified nanoparticles into macrophage cells was much lower than that of unmodified nanoparticles. while folic acid modification did not change the amount of the uptake. However, for breast cancer cells, both PEG and folic acid modification facilitated the nanoparticle internalization into the cells. Therefore, PEG and folic acid modification of magnetite nanoparticles could be used to resist the protein adsorption and thus avoid the particle recognition by macrophage cells, and to facilitate the nanoparticle uptake to specific cancer cells for cancer therapy and diagnosis.
This article was published in Biomaterials and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords