alexa Surface water disinfection by chlorination and advanced oxidation processes: Inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation.


Bioenergetics: Open Access

Author(s): Miranda AC, Lepretti M, Rizzo L, Caputo I, Vaiano V,

Abstract Share this page

Abstract The release of antibiotics into the environment can result in antibiotic resistance (AR) spread, which in turn can seriously affect human health. Antibiotic resistant bacteria have been detected in different aquatic environments used as drinking water source. Water disinfection may be a possible solution to minimize AR spread but conventional processes, such as chlorination, result in the formation of dangerous disinfection by-products. In this study advanced oxidation processes (AOPs), namely H2O2/UV, TiO2/UV and N-TiO2/UV, have been compared with chlorination in the inactivation of an AR Escherichia coli (E. coli) strain in surface water. TiO2 P25 and nitrogen doped TiO2 (N-TiO2), prepared by sol-gel method at two different synthesis temperatures (0 and -20°C), were investigated in heterogeneous photocatalysis experiments. Under the investigated conditions, chlorination (1.0 mg L(-1)) was the faster process (2.5 min) to achieve total inactivation (6 Log). Among AOPs, H2O2/UV resulted in the best inactivation rate: total inactivation (6 Log) was achieved in 45 min treatment. Total inactivation was not observed (4.5 Log), also after 120 min treatment, only for N-doped TiO2 synthesized at 0°C. Moreover, H2O2/UV and chlorination processes were evaluated in terms of cytotoxicity potential by means of 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenylte-trazolium colorimetric test on a human-derived cell line and they similarly affected HepG2 cells viability. Copyright © 2016 Elsevier B.V. All rights reserved. This article was published in Sci Total Environ and referenced in Bioenergetics: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version