alexa Surface-dependent reactions of the vitamin K-dependent enzyme complexes.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S

Abstract Share this page

Abstract During the past 20 years contributions from many laboratories have led to the development of isolation procedures, delineation of primary structures, and more recently, to the expression of recombinant proteins associated with the coagulation cascade. In general, studies of coagulation proteins under defined conditions have demonstrated the prescience of Davie and Ratnoff and MacFarlane in their proposals of the coagulation cascade. The more recent discovery of thrombomodulin by Esmon et al has led to the identification and characterization of components of the vitamin K-dependent anticoagulant pathway. In this review we have attempted to analyze and compare the functional properties of each of the vitamin K-dependent enzyme complexes associated with the procoagulant and anticoagulant phases of blood clotting. Although dissimilarities exist, the vitamin K-dependent complexes have analogous requirements and appear to function with a common general mode of organization. Membrane-bound cofactors serve as anchoring sites for the appropriate membrane-binding enzymes. This process localizes the complex on the membrane surface and increases the catalytic efficiency for substrate utilization. Complex formation provides extraordinary improvements in the catalytic efficiency for the complexes as compared with their soluble enzyme components. Membrane-bound complexes provide a mechanism that can be regulated at a site by membrane presentation, zymogen activation, and cofactor activation or presentation. The kinetic constants obtained for the various coagulation reactions determined in vitro provide some insights into how these pathways may function in vivo. The catalytic efficiency (kcat/Km) for factor X activation by factor VIIIa/factor IXa is far in excess of the catalytic efficiency of activation of factor X by tissue factor/factor VIIa (Table 3). This may provide a rational interpretation for the observation that patients with hemophilia A and B bleed even though they appear to have an alternative pathway to factor X activation. In addition, tissue factor is not ordinarily presented by the vascular tissue that has direct access to blood. However, it appears that extravascular constitutive tissue factor is available once the blood vessel becomes disrupted. The efforts to identify the initiating reactions of the blood coagulation process have not been unambiguously successful. We conclude that factor VII is most likely a zymogen, just as are the other proenzymes of the blood clotting process. In addition, it is difficult to rationalize the importance of the intrinsic pathway of coagulation involving factor XII, prekallikrein, and high molecular weight kininogen since the congenital absence of any one of these factors does not result in abnormal bleeding.(ABSTRACT TRUNCATED AT 400 WORDS)
This article was published in Blood and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version