alexa Survey of MapReduce frame operation in bioinformatics.
Microbiology

Microbiology

Applied Microbiology: Open Access

Author(s): Zou Q, Li XB, Jiang WR, Lin ZY, Li GL,

Abstract Share this page

Abstract Bioinformatics is challenged by the fact that traditional analysis tools have difficulty in processing large-scale data from high-throughput sequencing. The open source Apache Hadoop project, which adopts the MapReduce framework and a distributed file system, has recently given bioinformatics researchers an opportunity to achieve scalable, efficient and reliable computing performance on Linux clusters and on cloud computing services. In this article, we present MapReduce frame-based applications that can be employed in the next-generation sequencing and other biological domains. In addition, we discuss the challenges faced by this field as well as the future works on parallel computing in bioinformatics. © The Author 2013. Published by Oxford University Press. For Permissions, please email: [email protected] This article was published in Brief Bioinform and referenced in Applied Microbiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords