alexa Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Wackett LP, Brusseau GA, Householder SR, Hanson RS

Abstract Share this page

Abstract Microorganisms that biosynthesize broad-specificity oxygenases to initiate metabolism of linear and branched-chain alkanes, nitroalkanes, cyclic ketones, alkenoic acids, and chromenes were surveyed for the ability to biodegrade trichloroethylene (TCE). The results indicated that TCE oxidation is not a common property of broad-specificity microbial oxygenases. Bacteria that contained nitropropane dioxygenase, cyclohexanone monooxygenase, cytochrome P-450 monooxygenases, 4-methoxybenzoate monooxygenase, and hexane monooxygenase did not degrade TCE. However, one new unique class of microorganisms removed TCE from incubation mixtures. Five Mycobacterium strains that were grown on propane as the sole source of carbon and energy degraded TCE. Mycobacterium vaccae JOB5 degraded TCE more rapidly and to a greater extent than the four other propane-oxidizing bacteria. At a starting concentration of 20 microM, it removed up to 99\% of the TCE in 24 h. M. vaccae JOB5 also biodegraded 1,1-dichloroethylene, trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride.
This article was published in Appl Environ Microbiol and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords