alexa Sustained release of PTH(1-34) from PLGA microspheres suppresses osteoarthritis progression in rats.
Immunology

Immunology

Rheumatology: Current Research

Author(s): Eswaramoorthy R, Chang CC, Wu SC, Wang GJ, Chang JK,

Abstract Share this page

Abstract We previously reported that PTH(1-34) inhibits the terminal differentiation of articular chondrocytes and, in turn, suppresses the progression of osteoarthritis (OA). However, this treatment requires an injection of PTH(1-34) once every 3 days over the treatment period. In this study, we studied the effect of sustained administration of PTH(1-34) in a papain-induced OA rat model. We developed an effective controlled-release system for prolonging the treatment duration of an intra-articular injection for OA treatment in rats. The effects of released PTH(1-34) from PLGA(65:35)-encapsulated PTH(1-34) microspheres (PTH/PLGA) on papain-induced OA in rat knees were studied. Microsphere morphology was observed in vitro by scanning electron microscopy, and microsphere size was determined with a particle size analyzer. The PTH(1-34) encapsulation efficiency and release profile, as well as the toxicity of PTH/PLGA, were examined. The bioactivity of released PTH(1-34) was tested by examining cAMP levels in MC3T3E1 cells. In vivo, we evaluated the changes of localized GAG, Col II, and Col X in the articular cartilage of rat knees. Our results demonstrated that the surface of the PLGA microspheres was smooth, and the size of the microspheres was in the range of 51-127 μm. PTH/PLGA microspheres sustainably released PTH(1-34) for 19 days with a concentration range of 0.01-100 nM that covered the expected concentration of 10nM at 37°C. The cAMP levels of MC3T3E1 cells were elevated in the response to released PTH(1-34) from PTH/PLGA microspheres, indicating that the released PTH(1-34) is bioactive. Most importantly, intra-articular treatment with either PTH(1-34) (0.1-100 nM) 3 days/injection or PTH/PLGA microspheres (15 days/injection) for 5 weeks revealed the similar effect on suppressing papain-induced OA changes (decreasing GAG and Col II and increasing Col X) in rat knee cartilage. The effect of PTH/PLGA microspheres on suppressing OA progression was similar to that of a once-every-three-day injection of PTH(1-34), indicating that both the sustained and intermittent action of PTH(1-34) effectively suppress OA progression. The developed PLGA microspheres with sustained release and long-term effect may be potent carriers for PTH(1-34) used to treat early OA. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. This article was published in Acta Biomater and referenced in Rheumatology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords