alexa Switch to high-level virus replication and HLA class I upregulation in differentiating megakaryocytic cells after infection with pathogenic hantavirus.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Ltteke N, Raftery MJ, Lalwani P, Lee MH, Giese T,

Abstract Share this page

Abstract Hantaan virus (HTNV), the prototype member of the Hantavirus genus in the family Bunyaviridae, causes hemorrhagic fever with renal syndrome (HFRS) in humans. Hemorrhage is due to endothelial barrier damage and a sharp decrease in platelet counts. The mechanisms underlying HTNV-associated acute thrombocytopenia have not been elucidated so far. Platelets are produced by mature megakaryocytes that develop during megakaryopoiesis. In this study, we show that HTNV targets megakaryocytic cells whereas rather non-pathogenic hantaviruses did not infect this cell type. After induction of differentiation megakaryocytic cells switched from low-level to high-level HTNV production without reduction in cell survival or alteration in differentiation. However, increased HTNV replication resulted in strong upregulation of HLA class I molecules although HTNV escaped type I interferon (IFN)-associated innate responses. Taken together, HTNV efficiently replicates in differentiating megakaryocytic cells resulting in upregulation of HLA class I molecules, the target structures for cytotoxic T cells (CTLs). Copyright 2010 Elsevier Inc. All rights reserved. This article was published in Virology and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords