alexa Switch to the angiogenic phenotype during tumorigenesis.
Oncology

Oncology

Journal of Carcinogenesis & Mutagenesis

Author(s): Folkman J, Hanahan D

Abstract Share this page

Abstract Tumor growth and metastasis are angiogenesis-dependent. Virtually all solid tumors are neovascularized by the time they are detected. However, there is a prevascular phase during early tumor development where few or no tumor cells are angiogenic and expansion of the tumor is restricted to a few mm3. When enough tumor cells become angiogenic, the tumor can expand progressively and shed metastatic cells. This angiogenic switch has recently been quantitated for human breast cancer, as well as for prostate cancer. We have studied the problem of how tumors switch to the angiogenic phenotype by using transgenic mice in which tumors develop at a predictable time and in discrete prevascular and vascular stages. When the transgene is the bovine papilloma virus (BPV) genome, angiogenic fibrosarcomas develop from non-angiogenic precursors called fibromatoses. The fibrosarcomas secrete growth factors for capillary endothelial cells. In contrast, the fibromatoses do not secrete endothelial cell growth factors. When the transgene consists of the large "T" antigen of SV40 under the control of the rat insulin promoter, 70\% of pancreatic islets become hyperplastic and 4-10\% of these become angiogenic at 6-7 weeks. Tumors arise from these neovascularized hyperplastic islets and reach > 1000 x the volume of the preangiogenic islets. The onset of angiogenic activity coincides with the secretion of acidic fibroblast growth factor (aFGF) and other growth factors not fully identified at this writing. These studies help to explain the switch to the angiogenic phenotype during tumorigenesis and provide models to discover antiangiogenic therapies directed at the source of angiogenic activity. Such therapy, when developed, may be co-administered with currently available angiogenesis inhibitors which are directed at the target of angiogenic activity, vascular endothelial cells.
This article was published in Princess Takamatsu Symp and referenced in Journal of Carcinogenesis & Mutagenesis

Relevant Expert PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords