alexa Symmetry-based recoupling in double-rotation NMR spectroscopy.
Business & Management

Business & Management

Journal of Business & Financial Affairs

Author(s): Brinkmann A, Kentgens AP, Anupld T, Samoson A

Abstract Share this page

Abstract In this contribution, we extend the theory of symmetry-based pulse sequences of types CN(n) (nu) and RN(n) (nu) in magic-angle-spinning nuclear resonance spectroscopy [M. H. Levitt, in Encyclopedia of Nuclear Magnetic Resonance, edited by D. M. Grant and R. K. Harris (Wiley, Chichester, 2002), Vol. 9]. to the case of rotating the sample simultaneously around two different angles with respect to the external magnetic field (double-rotation). We consider the case of spin-1/2 nuclei in general and the case of half-integer quadrupolar nuclei that are subjected to weak radio frequency pulses operating selectively on the central-transition polarizations. The transformation properties of the homonuclear dipolar interactions and J-couplings under central-transition-selective spin rotations are presented. We show that the pulse sequence R2(2) (1)R2(2) (-1) originally developed for homonuclear dipolar recoupling of half-integer quadrupolar nuclei under magic-angle-spinning conditions [M. Eden, D. Zhou, and J. Yu, Chem. Phys. Lett. 431, 397 (2006)] may be used for the same purpose in the case of double rotation, if the radio frequency pulses are synchronized with the outer rotation of the sample. We apply this sequence, sandwiched by central-transition selective 90 degrees pulses, to excite double-quantum coherences in homonuclear spin systems consisting of (23)Na and (27)Al nuclei. This article was published in J Chem Phys and referenced in Journal of Business & Financial Affairs

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version