alexa Synaptogenesis in the prefrontal cortex of rhesus monkeys.

Journal of Primatology

Author(s): Bourgeois JP, GoldmanRakic PS, Rakic P

Abstract Share this page

Abstract Since the turn of the century, the prefrontal association areas of the cerebral cortex have been thought to be among the last regions of the cortical mantle to develop. We have examined the course of synaptogenesis in the macaque prefrontal cortex by quantitative electron microscopic analysis in 25 rhesus monkeys ranging in age from embryonic day 47 (E47) to 20 years of age. A series of overlapping electron micrographs spanning the whole cortical thickness in each animal provided data on the number, the proportion, and the density of synapses per unit area (NA) and per unit volume (NV) of neuropil. The tempo and kinetics of synapse formation in prefrontal cortex closely resemble those described for sensory and motor areas, particularly during the stages of synapse acquisition and overproduction (Rakic et al., 1986). In young embryos, we describe a precortical phase (E47-E78), when synapses are found only above and below, but not within, the cortical plate. Following that, there is an early cortical phase, from E78 to E104, during which synapses accumulate within the cortical plate, initially exclusively on dendritic shafts. The next rapid phase of synaptogenesis begins at 2 months before birth and ends approximately at 2 months after birth, culminating with a mean density of 750 million synapses per cubic micrometer. This accumulation is largely accounted for by a selective increase in axospine synapses in the supragranular layers. The period of explosive synaptic density is followed by a protracted plateau stage that lasts from 2 months to 3 years of age when synaptic density remains relatively constant. The final period of decline, from 3 years through over 20 years of age, is marked by a slight but statistically significant decline in synaptic density. Concurrent recruitment of synapses with that of sensory and motor areas supports the concept that the initial establishment of cortical circuitry is governed by general mechanisms common to all areas, independent of their specific functional domain. The finding that synaptic density is relatively stable from early adolescence through puberty (the plateau period) is indicative of the importance, in primates, of a consistent and high synaptic density during the formative years when learning experiences are most intense.
This article was published in Cereb Cortex and referenced in Journal of Primatology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version