alexa Synergy between celecoxib and radiotherapy results from inhibition of cyclooxygenase-2-derived prostaglandin E2, a survival factor for tumor and associated vasculature.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Davis TW, ONeal JM, Pagel MD, Zweifel BS, Mehta PP,

Abstract Share this page

Abstract Previous work has demonstrated that selective cyclooxygenase-2 (COX-2) inhibitors can act synergistically with radiotherapy to improve tumor debulking and control in preclinical models. The underlying mechanism of this remarkable activity has not yet been determined. Here, we report that radiation can elevate intratumoral levels of COX-2 protein and its products, particularly prostaglandin E(2) (PGE(2)). Furthermore, inhibition of COX-2 activity or neutralization of PGE(2) activity enhances radiotherapy even in tumors where COX-2 expression is restricted to the tumor neovasculature. Direct assessment of vascular function by direct contrast enhancement-magnetic resonance imaging showed that the combination of radiation and celecoxib lead to enhanced vascular permeability. These observations suggest that an important mechanism of celecoxib-induced radiosensitization involves inhibition of COX-2-derived PGE(2), thus removing a survival factor for the tumor and its vasculature.
This article was published in Cancer Res and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version