alexa Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase.


Journal of Biosensors & Bioelectronics

Author(s): McDonagh C, Maccraith BD, McEvoy AK

Abstract Share this page

Abstract Sol-gel-based optical sensors for both gas-phase and dissolved oxygen have been developed. Both sensors operate on the principle of fluorescence quenching of a ruthenium complex which has been entrapped in a porous sol-gel silica film. A comprehensive investigation was carried out in order to establish optimal film-processing parameters for the two sensing environments. Both tetraethoxysilane and organically modified sol-gel precursors such as methyltriethoxysilane and ethyltriethoxysilane were used. Film hydrophobicity increases as a function of modified precursor content, and this was correlated with enhanced dissolved oxygen (DO) sensor performance. Extending the aliphatic group of the modified precursor further improved DO sensitivity. The influence of water/precursor molar ratio, R, on the sol-gel film microstructure was investigated. R value tailoring of the microstructure and film surface hydrophobicity tailoring were correlated with oxygen diffusion behavior in the films via the Stern-Volmer constants for both gas phase and DO sensing. Excellent performance characteristics were measured for both gas-phase and DO oxygen sensors. The long-term quenching stability of DO sensing films was established over a period of 6 months. This article was published in Anal Chem and referenced in Journal of Biosensors & Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version