alexa Taming of transposable elements by homology-dependent gene silencing.
Genetics

Genetics

Molecular Biology: Open Access

Author(s): Jensen S, Gassama MP, Heidmann T

Abstract Share this page

Abstract Transposable elements can invade virgin genomes within a few generations, after which the elements are 'tamed' and retain only limited transpositional activity. Introduction of the I element, a transposon similar to mammalian LINE elements, into Drosophila melanogaster genomes devoid of such elements initially results in high-frequency transposition of the incoming transposon, high mutation rate, chromosomal nondisjunction and female sterility, a syndrome referred to as hybrid dysgenesis (for review, see refs 2-4); a related syndrome has also been described in mammals. High-frequency transposition is transient, as the number of I elements reaches a finite value and transposition ceases after approximately ten generations. It has been proposed that the I elements encode a factor that negatively regulates their own transcription, but evidence for such a mechanism is lacking. Using the hybrid dysgenesis syndrome in Drosophila as a model, we show here that transpositional activity of the I element can be repressed by prior introduction of transgenes expressing a small internal region of the I element. This autoregulation presents features characteristic of homology-dependent gene silencing, a process known as cosuppression. Repression does not require any translatable sequence, its severity correlates with transgene copy number and it develops in a generation-dependent manner via germline transmission of a silencing effector in females only. These results demonstrate that transposable elements are prone to and can be tamed by homology-dependent gene silencing, a process that may have emerged during the course of evolution as a specific defense mechanism against these elements. This article was published in Nat Genet and referenced in Molecular Biology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords