alexa Target-based selection of flavonoids for neurodegenerative disorders.
Reproductive Medicine

Reproductive Medicine

Clinics in Mother and Child Health

Author(s): Jones QR, Warford J, Rupasinghe HP, Robertson GS

Abstract Share this page

Abstract Habitual consumption of dietary flavonoids known to improve mitochondrial bioenergetics and inhibit various secondary sources of reactive oxygen species (ROS) reduces the risk for neurodegenerative disorders such as Parkinson's disease (PD), stroke, and Alzheimer's disease (AD). Combining specific dietary flavonoids selected on the basis of oral bioavailability, brain penetration, and the inhibition of multiple processes responsible for excessive ROS production may be a viable approach for the prevention and treatment of neurodegenerative disorders. Inclusion of flavonoids that raise cAMP levels in the brain may be of additional benefit by reducing the production of proinflammatory mediators and stimulating the transcriptional machinery necessary for mitochondrial biosynthesis. Preclinical models suggest that flavonoids reduce hearing loss resulting from treatment with the chemotherapeutic drug cisplatin by opposing the excessive production of ROS and proinflammatory mediators implicated in PD, stroke, and AD. Flavonoid combinations optimized for efficacy in models of cisplatin-induced hearing loss (CIHL) may therefore have therapeutic utility for neurodegenerative disorders. Copyright © 2012 Elsevier Ltd. All rights reserved. This article was published in Trends Pharmacol Sci and referenced in Clinics in Mother and Child Health

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version