alexa Targeted therapy for advanced prostate cancer: inhibition of the PI3K Akt mTOR pathway.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Morgan TM, Koreckij TD, Corey E

Abstract Share this page

Abstract A large number of novel therapeutics is currently undergoing clinical evaluation for the treatment of prostate cancer, and small molecule signal transduction inhibitors are a promising class of agents. These inhibitors have recently become a standard therapy in renal cell carcinoma and offer significant promise in prostate cancer. Through an understanding of the key pathways involved in prostate cancer progression, a rational drug design can be aimed at the molecules critical to cellular signaling. This may enable administration of selective therapies based on the expression of molecular targets, more appropriately individualizing treatment for prostate cancer patients. One pathway with a prominent role in prostate cancer is the PI3K/Akt/mTOR pathway. Current estimates suggest that PI3K/Akt/mTOR signaling is upregulated in 30-50\% of prostate cancers, often through loss of PTEN. Molecular changes in the PI3K/Akt/mTOR signaling pathway have been demonstrated to differentiate benign from malignant prostatic epithelium and are associated with increasing tumor stage, grade, and risk of biochemical recurrence. Multiple inhibitors of this pathway have been developed and are being assessed in the laboratory and in clinical trials, with much attention focusing on mTOR inhibition. Current clinical trials in prostate cancer are assessing efficacy of mTOR inhibitors in combination with multiple targeted or traditional chemotherapies, including bevacizumab, gefitinib, and docetaxel. Completion of these trials will provide substantial information regarding the importance of this pathway in prostate cancer and the clinical implications of its targeted inhibition. In this article we review the data surrounding PI3K/Akt/mTOR inhibition in prostate cancer and their clinical implications.
This article was published in Curr Cancer Drug Targets and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medi[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords