alexa Targeting metabolic remodeling in glioblastoma multiforme.


Drug Designing: Open Access

Author(s): Wolf A, Agnihotri S, Guha A

Abstract Share this page

Abstract A key aberrant biological difference between tumor cells and normal differentiated cells is altered metabolism, whereby cancer cells acquire a number of stable genetic and epigenetic alterations to retain proliferation, survive under unfavorable microenvironments and invade into surrounding tissues. A classic biochemical adaptation is the metabolic shift to aerobic glycolysis rather than mitochondrial oxidative phosphorylation, regardless of oxygen availability, a phenomenon termed the "Warburg Effect". Aerobic glycolysis, characterized by high glucose uptake, low oxygen consumption and elevated production of lactate, is associated with a survival advantage as well as the generation of substrates such as fatty acids, amino acids and nucleotides necessary in rapidly proliferating cells. This review discusses the role of key metabolic enzymes and their association with aerobic glycolysis in Glioblastoma Multiforme (GBM), an aggressive, highly glycolytic and deadly brain tumor. Targeting key metabolic enzymes involved in modulating the "Warburg Effect" may provide a novel therapeutic approach either singularly or in combination with existing therapies in GBMs. This article was published in Oncotarget and referenced in Drug Designing: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version