alexa Targeting nanoparticles to cancer.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Wang M, Thanou M

Abstract Share this page

Abstract Nanotechnology applications in medicine, termed as nanomedicine, have introduced a number of nanoparticles of variable chemistry and architecture for cancer imaging and treatment. Nanotechnology involves engineering multifunctional devices with dimensions at the nanoscale, similar dimensions as those of large biological vesicles or molecules in our body. These devices typically have features just tens to hundred nanometers across and they can carry one or two detection signals and/or therapeutic cargo(s). One unique class of nanoparticles is designed to do both, providing this way the theragnostic nanoparticles (therapy and diagnosis). Being inspired by physiologically existing nanomachines, nanoparticles are designed to safely reach their target and specifically release their cargo at the site of the disease, this way increasing the drug's tissue bioavailability. Nanoparticles have the advantage of targeting cancer by simply being accumulated and entrapped in tumours (passive targeting). The phenomenon is called the enhanced permeation and retention effect, caused by leaky angiogenetic vessels and poor lymphatic drainage and has been used to explain why macromolecules and nanoparticles are found at higher ratios in tumours compared to normal tissues. Although accumulation in tumours is observed cell uptake and intracellular drug release have been questioned. Polyethyleneglycol (PEG) is used to protect the nanoparticles from the Reticulo-Endothelial System (RES), however, it prevents cell uptake and the required intracellular drug release. Grafting biorecognition molecules (ligands) onto the nanoparticles refers to active targeting and aims to increase specific cell uptake. Nanoparticles bearing these ligands are recognised by cell surface receptors and this leads to receptor-mediated endocytosis. Several materials are suggested for the design of nanoparticles for cancer. Polymers, linear and dendrimers, are associated with the drug in a covalent or non-covalent way and have been used with or without a targeting ligand. Stealth liposomes are suggested to carry the drug in the aqueous core, and they are usually decorated by recognition molecules, being widely studied and applied. Inorganic nanoparticles such as gold and iron oxide are usually coupled to the drug, PEG and the targeting ligand. It appears that the PEG coating and ligand decoration are common constituents in most types of nanoparticles for cancer. There are several examples of successful cancer diagnostic and therapeutic nanoparticles and many of them have rapidly moved to clinical trials. Nevertheless there is still a room for optimisation in the area of the nanoparticle kinetics such as improving their plasma circulation and tumour bioavailability and understanding the effect of targeting ligands on their efficiency to treat cancer. The need to develop novel and efficient ligands has never been greater, and the use of proper conjugation chemistry is mandatory. Copyright 2010 Elsevier Ltd. All rights reserved. This article was published in Pharmacol Res and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords