alexa Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC

Abstract Share this page

Abstract Bone marrow (BM)-derived mesenchymal stem cells (MSCs) represent a promising population for supporting new concepts in cellular therapy. This study was undertaken to assess the efficacy and feasibility of autologous BM-derived MSCs in the treatment of chronic nonhealing ulcers (diabetic foot ulcers and Buerger disease) of the lower extremities. A total of 24 patients with nonhealing ulcers of the lower limb were enrolled and randomized into implant and control groups. In the implant group, the patients received autologous cultured BM-derived MSCs along with standard wound dressing; the control group received only the standard wound dressing regimen, followed up for at least a 12-week period. Wound size, pain-free walking distance, and biochemical parameters were measured before therapy and at every 2-week interval following intervention. The implant group had significant improvement in pain-free walking distance and reduction in ulcer size as compared to those in the control group. In the implant group for Buerger disease, the ulcer area decreased from 5.04 +/- 0.70 cm(2) to 1.48 +/- 0.56 cm(2) (p < 0.001), whereas the pain-free walking distance increased from 38.33 +/- 17.68 m to 284.44 +/- 212.12 m (p < 0.001). In the diabetic foot ulcer group, the ulcer size decreased from 7.26 +/- 1.41 cm(2) to 2 +/- 0.98 cm(2) (p < 0.001) at 12 weeks. Mononuclear cells were cultured for a minimum of five passages and characterized by cell-surface markers showing CD90+, CD105+, and CD34(-). There was no significant alteration in the biochemical parameters observed during the follow-up period, indicating normal liver and renal function following intervention. Biopsy microsection of implanted tissues showed development of dermal cells (mainly fibroblasts), including mature and immature inflammatory cells. The study indicates that autologous implantation of BM-derived MSCs in nonhealing ulcers accelerates the healing process and improves clinical parameters significantly. This article was published in Rejuvenation Res and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version