alexa Targeting of the non-mutated tumor antigen HER2 neu to mature dendritic cells induces an integrated immune response that protects against breast cancer in mice.
Immunology

Immunology

Immunotherapy: Open Access

Author(s): Wang B, Zaidi N, He LZ, Zhang L, Kuroiwa JM,

Abstract Share this page

Abstract INTRODUCTION: Given their relative simplicity of manufacture and ability to be injected repeatedly, vaccines in a protein format are attractive for breast and other cancers. However, soluble human epidermal growth factor receptor (HER2)/neu protein as a vaccine has not been immunogenic. When protein is directly targeted to antigen uptake receptors, such as DEC205 (DEC), efficient processing and presentation of antigen take place. The aim of this study was to determine the immunogenicity of a HER2 protein vaccine that directly targets to DEC+ dendritic cells (DCs) in a mouse breast cancer model. METHODS: We genetically engineered the HER2 extracellular domain into a monoclonal antibody specific for DEC (DEC-HER2). Mice of various genetic backgrounds were immunized with DEC-HER2 in combination with DC maturation stimuli (poly IC ± CD40 Ab). Vaccine-induced T cell immunity was determined by analyzing the ability of CD4+/CD8+ T cell to produce interferon (IFN)-gamma and proliferate upon antigen rechallenge. Sera were assessed for the presence of antigen specific antibody (Ab). For vaccine efficacy, FVB/N mice were immunized with DEC-HER2 in combination with poly IC and protection against neu-expressing mammary tumors was assessed. Protection mechanisms and tumor-specific T cell responses were also evaluated. RESULTS: We demonstrate that DEC-HER2 fusion mAb, but not Ctrl Ig-HER2, elicits strong, broad and multifunctional CD4+ T cell immunity, CD8+ T cell responses, and humoral immunity specific for HER2 antigen. Cross-reactivity to rat neu protein was also observed. Importantly, mice xeno-primed with DEC-HER2 were protected from a neu-expressing mammary tumor challenge. Both CD4+ and CD8+ T cells mediated the tumor protection. Robust anti-tumor T cell immunity was detected in tumor protected mice. CONCLUSIONS: Immunization of mice with HER2 protein vaccine targeting DEC+ DCs in vivo induced high levels of T- and B-cell immunity. Non-targeted HER2 protein was poorly immunogenic for CD4+ and CD8+ T cells. This vaccination approach provided long-term survival benefit for mice challenged with neu-expressing tumor following as little as 2.7 μg of HER2 protein incorporated in the vaccine. Vaccine-induced CD4+ and CD8+ T cells were both essential for tumor protection. This immunization strategy demonstrates great potential towards the development of vaccines for breast cancer patients.
This article was published in Breast Cancer Res and referenced in Immunotherapy: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords