alexa Targeting tumor angiogenesis with adenovirus-delivered anti-Tie-2 intrabody.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Popkov M, Jendreyko N, McGavern DB, Rader C, Barbas CF rd

Abstract Share this page

Abstract Inhibition of tumor angiogenesis is a promising approach for cancer therapy. As an endothelial cell-specific receptor kinase expressed almost exclusively on the surface of vascular endothelium, Tie-2 has an important role in tumor angiogenesis. To explore the therapeutic potential of blocking Tie-2 receptor-interaction pathway, an adenoviral vector was used to deliver a recombinant single-chain antibody fragment rabbit intrabody (pAd-2S03) capable of inhibition of both mouse and human Tie-2 surface expression. pAd-2S03 was given to mice with well-established primary tumors, either a human Kaposi's sarcoma (SLK) or a human colon carcinoma (SW1222). The intrabody significantly inhibited growth of both tumors (75\% and 63\%, respectively) when compared with pAd-GFP control-treated tumors (P < 0.01). Histopathologic analysis of cryosections taken from mice treated with pAd-2S03 revealed a marked decrease in vessel density, which was reduced by >87\% in both tumor models when compared with control-treated tumors (P < 0.01). In contrast, human Tie-2-monospecific pAd-1S05 intrabody did not affect the growth of tumors, indicating that the antitumor effect of pAd-2S03 was due to the inhibition of tumor angiogenesis in these murine models. Our results show that the Tie-2 receptor pathway is essential for both SLK sarcoma and SW1222 colon carcinoma xenograft growth. The present study shows the potential utility of antiangiogenic agents that target the endothelium-specific receptor Tie-2 for down-regulation or genetic deletion.
This article was published in Cancer Res and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

socia[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords