alexa Taurine and zinc modulate outgrowth from goldfish retinal explants.


Journal of Membrane Science & Technology

Author(s): Nusetti S, Obregn F, Quintal M, Benzo Z, Lima L

Abstract Share this page

Abstract Taurine and zinc, highly concentrated in the retina, possess similar properties in this structure, such as neuro-protection, membrane stabilization, influencing regeneration, and modulating development, maybe by acting in parallel or as interacting agents. We previously demonstrated that there are some correlations between taurine and zinc levels in hippocampus, dentate gyrus and retina of the developing rat. In the present study we evaluate the possible effects of taurine and zinc on outgrowth from goldfish retinal explants. The optic nerve was crushed 10 days before plating and culturing retinal explants in Leibovitz medium with 10\% fetal calf serum and gentamicin. Neurites were measured with SigmaScanPro after 5 days in culture. Taurine (HPLC) and zinc (ICP) concentrations were determined in the retina between 1 and 180 days after crushing the optic nerve. Zinc sulfate (0.01-100 microM), N,N, N',N'-tetrakis (pyridylmethyl) ethylenediamine (TPEN, 0.1-5 nM) and diethylenetriamine penta-acetic acid (DTPA, 10-300 microM), intracellular and extracellular zinc chelators, respectively, were added to the medium. TPEN was also injected intraocular (0.1 nM). Combinations of them were added with taurine (1-16 mM). Taurine concentrations were elevated in the retina 72 h after the crush, but were normalized by 180 days, those of zinc increased at 24 h, preceding the increase of taurine. The axonal transport of [3H]taurine from the optic tectum to the retina was not affected in fish with or without crush of the optic nerve at early periods after the injection, indicating an increase of it post-lesion. Zinc sulfate produced a bell-shaped concentration dependency on in vitro outgrowth, with stimulation at 0.05 microM, and inhibition at higher levels, also increased the effect of 4 mM taurine at 0.02 microM, but diminished it at higher concentrations in the medium. TPEN decreased outgrowth at 1 nM, but not at 0.5 nM, although the simultaneous presence of 4 mM taurine and 0.5 nM TPEN decreased outgrowth respecting the stimulation by taurine alone. The intraocular administration of TPEN decreased outgrowth in vitro, an effect counteracted by the addition of 4 mM taurine to the culture medium. DTPA decreased outgrowth from 10 microM in the medium. The present results indicate that an optimal zinc concentration is necessary for outgrowth of goldfish retinal explants and that, in zinc deficient retina, taurine could stimulate outgrowth. In addition, the observations of variations in tissue concentrations and of the effects of intraocular administration of TPEN indicate that these effects could occur in vivo. This article was published in Neurochem Res and referenced in Journal of Membrane Science & Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference and Expo on Water Microbiology & Novel Technologies
    (10 Plenary Forums 3 days 1 Event)
    August 28-30, 2017, Philadelphia, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version