alexa TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular Imaging & Dynamics

Author(s): Cardaci S, Ciriolo MR

Abstract Share this page

Abstract Inborn defects of the tricarboxylic acid (TCA) cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate dehydrogenase (IDH), pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.
This article was published in Int J Cell Biol and referenced in Journal of Molecular Imaging & Dynamics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference on Nuclear Medicine & Radiation Therapy
    July 27-28, 2017 Rome, Italy
  • 5th International Conference on Current Trends in Mass Spectrometry
    September 25-27, 2017 Atlanta, USA
  • 8th Global Mass Spectrometry Congress
    Dec 14-16, 2017 Dubai, UAE
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords