alexa Tc(VII) reduction and accumulation by immobilized cells of Escherichia coli.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Lloyd JR, Harding CL, Macaskie LE

Abstract Share this page

Abstract Resting cells of Escherichia coli, immobilized in a flow-through bioreactor, coupled the oxidation of formate or hydrogen to Tc(VII) reduction and removal from solution. Cells, pregrown anaerobically in a hollow-fiber membrane bioreactor, were challenged with 50 microM Tc(VII) in a carrier solution of phosphate-buffered saline. The radionuclide accumulated within the membrane component of the reactor, corresponding to the localization of the cells. Negligible Tc removal was noted in a reactor containing a mutant deficient in active Tc(VII) reductase, when supplied with formate as an electron donor. Formate or hydrogen was supplied as the electron donor for Tc(VII) reduction to cells immobilized in reactors operated in transverse (crossflow) and direct (dead-end filtration) modes, respectively. Flow-rate activity relationships were used to compare the performance of the reactors. A flow rate of 2.4 mL h(-1) supported the removal of 50\% of the Tc from solution in a reactor operated in transverse mode with formate as an electron donor. In contrast, a flow rate of 0.7 mL h(-1), supported comparable Tc removal when hydrogen was introduced to a reactor operated in direct mode. The reduced reactor efficiency, when hydrogen was used as an electron donor, could be attributed, in part, to poor delivery of the gas to the cells. The biocatalyst was highly stable in the reactor; no loss in activity was noted over 200 h of continuous use. This article was published in Biotechnol Bioeng and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords