alexa Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Wirth T, Khnel F, FleischmannMundt B, Woller N, Djojosubroto M,

Abstract Share this page

Abstract Hepatocellular carcinomas (HCC) are drug-resistant tumors that frequently possess high telomerase activity. It was therefore the aim of our study to investigate the potential of telomerase-dependent virotherapy in multimodal treatment of HCC. In contrast to normal liver, HCC xenografts showed high telomerase activity, resulting in tumor-restricted expression of E1A by a telomerase-dependent replicating adenovirus (hTERT-Ad). Neither tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or chemotherapy alone nor the combined treatment with both agents resulted in significant destruction of HCC cells. Application of hTERT-Ad at low titers was also not capable to destroy HCC cells, but telomerase-dependent virotherapy overcame the resistance of HCC against TRAIL and chemotherapy. The synergistic effects are explained by a strong down-regulation of Mcl-1 expression through hTERT-Ad that sensitizes HCC for TRAIL- and chemotherapy-mediated apoptosis. To investigate whether down-regulation of Mcl-1 alone is sufficient to explain synergistic effects observed with virotherapy, Mcl-1 expression was inhibited by RNA interference. Treatment with Mcl-1-siRNA significantly enhanced caspase-3 activity after chemotherapy and TRAIL application, confirming that elimination of Mcl-1 is responsible for the drug sensitization by hTERT-Ad. Consistent with these results, heterologous overexpression of Mcl-1 significantly reduced the sensitization of hTERT-Ad transduced cells against apoptosis-inducing agents. Chemotherapy did not interfere with quantitative hTERT-Ad production in HCC cells. Whereas hTERT-Ad virotherapy alone was only capable to inhibit the growth of Hep3B xenografts, virochemotherapy resulted in vast destruction of the drug-resistant HCC. In conclusion our data indicate that telomerase-dependent virotherapy is an attractive strategy to overcome the natural resistance of HCC against anticancer drugs by elimination of Mcl-1. This article was published in Cancer Res and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords