alexa Temperature dependence of H permeation through Pd and Pd alloy membranes.


Journal of Membrane Science & Technology

Author(s): Flanagan TB, Wang D

Abstract Share this page

Abstract H permeabilities (normalized fluxes), have been measured through Pd and some Pd alloy membranes at a series of constant upstream H(2) pressures with the downstream pressure being ~0 in the temperature range from 393 to 573 K. From these data, activation energies for H permeation, E(P), have been determined. Conditions of constant upstream p(H(2)) are of most interest since most determinations of E(P) in the literature have employed this boundary condition. Permeabilities have also been measured at a series of constant upstream H concentrations with the downstream concentration being ~0 and, under these conditions, the slopes of the Arrhenius plots give activation energies equivalent to those for H diffusion. It is shown here that under constant upstream p(H(2)) conditions, nonideality of the H leads to nonlinear Arrhenius plots of P for Pd and especially for some Pd alloy membranes where the H(2) solubilities are significant even at moderate p(H(2)). For example, the permeabilities of a Pd(0.77)Ag(0.23) alloy membrane and a Pd(0.94)Y(0.06) alloy membrane are found to be nearly independent of temperature (423 to 523 K) in the range of constant upstream pressures from 16.1 to 81 kPa. This article was published in J Phys Chem A and referenced in Journal of Membrane Science & Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference and Expo on Water Microbiology & Novel Technologies
    (10 Plenary Forums 3 days 1 Event)
    August 28-30, 2017, Philadelphia, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version