alexa Temporal delimitation of the healing phases via monitoring of fracture callus stiffness in rats.
Orthopaedics

Orthopaedics

Orthopedic & Muscular System: Current Research

Author(s): Wehner T, Gruchenberg K, Bindl R, Recknagel S, Steiner M,

Abstract Share this page

Abstract The healing process consists of at least three phases: inflammatory, repair, and remodeling phase. Because callus stiffness correlates with the healing phases, it is suitable for evaluating the fracture healing process. Our aim was to develop a method which allows determination of callus stiffness in vivo, the healing time and the duration of the repair phase. The right femurs of 16 Wistar rats were osteotomized and stabilized with either more rigid or more flexible external fixation. Fixator deformation was measured using strain gauges during gait analysis. The strains were recalculated as the callus stiffness over the time course of healing, and the healing phases were identified based on stiffness thresholds. Our hypothesis was that stabilization with more flexible external fixation prolongs the repair phase, therefore resulting in an extended healing time. Confirming our hypothesis, the duration of the repair phase (rigid: approximately 15 days, flexible: approximately 41 days) and the healing time (rigid: approximately 27 days, flexible: approximately 62 days) were significantly longer for more flexible external fixation. Our method allows the quantitative detection of differences in the healing time and duration of the repair phase without multiple time-point sacrifices, which reduces the number of animals in experimental studies. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. This article was published in J Orthop Res and referenced in Orthopedic & Muscular System: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version