alexa Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex.
Medicine

Medicine

Otolaryngology: Open Access

Author(s): Steinschneider M, Volkov IO, Noh MD, Garell PC, Howard MA rd

Abstract Share this page

Abstract Voice onset time (VOT) is an important parameter of speech that denotes the time interval between consonant onset and the onset of low-frequency periodicity generated by rhythmic vocal cord vibration. Voiced stop consonants (/b/, /g/, and /d/) in syllable initial position are characterized by short VOTs, whereas unvoiced stop consonants (/p/, /k/, and t/) contain prolonged VOTs. As the VOT is increased in incremental steps, perception rapidly changes from a voiced stop consonant to an unvoiced consonant at an interval of 20-40 ms. This abrupt change in consonant identification is an example of categorical speech perception and is a central feature of phonetic discrimination. This study tested the hypothesis that VOT is represented within auditory cortex by transient responses time-locked to consonant and voicing onset. Auditory evoked potentials (AEPs) elicited by stop consonant-vowel (CV) syllables were recorded directly from Heschl's gyrus, the planum temporale, and the superior temporal gyrus in three patients undergoing evaluation for surgical remediation of medically intractable epilepsy. Voiced CV syllables elicited a triphasic sequence of field potentials within Heschl's gyrus. AEPs evoked by unvoiced CV syllables contained additional response components time-locked to voicing onset. Syllables with a VOT of 40, 60, or 80 ms evoked components time-locked to consonant release and voicing onset. In contrast, the syllable with a VOT of 20 ms evoked a markedly diminished response to voicing onset and elicited an AEP very similar in morphology to that evoked by the syllable with a 0-ms VOT. Similar response features were observed in the AEPs evoked by click trains. In this case, there was a marked decrease in amplitude of the transient response to the second click in trains with interpulse intervals of 20-25 ms. Speech-evoked AEPs recorded from the posterior superior temporal gyrus lateral to Heschl's gyrus displayed comparable response features, whereas field potentials recorded from three locations in the planum temporale did not contain components time-locked to voicing onset. This study demonstrates that VOT at least partially is represented in primary and specific secondary auditory cortical fields by synchronized activity time-locked to consonant release and voicing onset. Furthermore, AEPs exhibit features that may facilitate categorical perception of stop consonants, and these response patterns appear to be based on temporal processing limitations within auditory cortex. Demonstrations of similar speech-evoked response patterns in animals support a role for these experimental models in clarifying selected features of speech encoding.
This article was published in J Neurophysiol and referenced in Otolaryngology: Open Access

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords