alexa Temporal expression of different pathways of 1-arginine metabolism in healing wounds.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Albina JE, Mills CD, Henry WL Jr, Caldwell MD

Abstract Share this page

Abstract Arginine can be metabolized by inflammatory cells through at least two pathways. One is an oxidative l-arginine deiminase (OAD) that results in the formation of citrulline and reactive nitrogen intermediates. The other is arginase, which determines the production of ornithine and urea. The temporal expression of these pathways in an experimental wound model (s.c. implanted polyvinyl alcohol sponges in the rat) was investigated by examining the concentrations of amino acids and of nitrite in fluids obtained from the sponges 6 h to 15 day after implantation. These analyses revealed two distinct periods during which the arginine concentration in the fluids was markedly below plasma levels. During the early period (less than 3 days after sponge implantation) wound fluid contained more citrulline and nitrite than at any other time, suggesting OAD activity. In contrast, ornithine accumulated in the fluids during the late decrease in arginine concentration that extended beyond day 3, during which time the wound fluid also contained a high arginase activity. This time-dependent expression of different pathways of arginine metabolism in wounds was confirmed in sponge cultures containing [guanido-14C]-l-arginine. Cells contained in sponges harvested less than 48 h after implantation metabolized labeled arginine mainly to labeled citrulline, whereas labeled urea was produced during culture of sponges harvested after this time. The low arginine content of wound fluid did not appear to be rate limiting for the expression of OAD in late sponges because no OAD activity was evidenced when 4 mM arginine was added to the cultures. These results indicate that the OAD pathway is expressed in this model predominantly during the early, polymorphonuclear leukocyte-predominant, phase of repair. At this time, the reactive nitrogen intermediates resulting from the metabolism of arginine may mediate some of the events characteristic of early inflammation, including microbiostasis, vasodilation, and inhibition/reversal of platelet aggregation. In turn, the late suppression of this pathway and the catabolism of arginine through arginase may promote macrophage function within wounds.
This article was published in J Immunol and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords