alexa Terahertz fourier transform characterization of biological materials in a liquid phase
Biomedical Sciences

Biomedical Sciences

Journal of Biomolecular Research & Therapeutics

Author(s): Tatiana Globus, Dwight Woolard, Thomas W Crowe

Abstract Share this page

Significant progress has been achieved during the last several years relating to experimental and theoretical aspects of terahertz (or submillimetre wave) Fourier transform spectroscopy of biological macromolecules. However, previous research in this spectral range has been focused on bio-materials in solid state since it was common opinion that high water absorption will obscure the spectral signatures of the bio-molecules in solutions. At the same time, the biological functions of DNA and proteins take place in water solutions. In this work, the spectra of DNA samples have been measured in liquid phase (gel) over the spectral range 10–25 cm−1 and compared with spectra obtained from solid films. The results demonstrate that there is very little interference between the spectral features of the material under test and the water background except for the band around 18.6 cm−1. Multiple resonances due to low frequency vibrational modes within biological macromolecules in solutions are unambiguously demonstrated. Higher level of sensitivity and higher sharpness of vibrational modes are observed in the liquid environment in comparison with the solid phase, with the width of spectral lines 0.3–0.5 cm−1. Gel sample spectra are found to be polarization-dependent. The ability of THz spectroscopy to characterize samples in liquid phase could be very important since it permits examination of DNA interactions in real (wet) samples. One demonstrated example of practical importance is the ability to discriminate between spectral patterns for native and denaturated DNA.

  • To read the full article Visit
  • Open Access
This article was published in J Phys D: Appl Phys and referenced in Journal of Biomolecular Research & Therapeutics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

agriaquaculture@omicsonline.com

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

biochemjournals@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

chemistryjournals@omicsonline.com

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

clinicaljournals@omicsonline.com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engineeringjournals@omicsonline.com

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

nutritionjournals@omicsonline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

generalscience@omicsonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmolbio@omicsonline.com

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immunomicrobiol@omicsonline.com

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nursinghealthcare@omicsonline.com

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

medicaljournals@omicsonline.com

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuropsychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

pharmajournals@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords