alexa Tes, a potential Mena-related cancer therapy target.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Pharmacognosy & Natural Products

Author(s): Li X

Abstract Share this page

Abstract Cancer remains one of the world's most prominent causes of human morbidity and mortality, particularly in developing countries. According to 2005 statistics from the WHO, approximately 7.6 million people died of cancer out of 58 million deaths worldwide, with 9 million people estimated to die from cancer in 2015 and 11.4 million to die in 2030 ( The principal and internationally recognized methods of cancer treatment are surgery, radiotherapy, chemotherapy, or multimodality therapy. With the recent development of cancer biology, more and more tumor-related targets have been identified, ushering in a new era for target therapy. Every possible step that causes cellular cancer, such as signal transduction pathways, oncogenes and anti-oncogenes, cytokines and receptors, antiangiogenesis, suicide genes, and telomerase (Shay JW, Keith WN. Br J Cancer 2008), that is biologically relevant, reproducibly measurable, and definably correlated with clinical benefit represents a target for target therapies like targeting gene-virotherapy and monoclonal antibody-directed therapy. These therapies can specifically inhibit the growth of tumor cells at the molecular level and even kill them. Generally speaking, cancer-related targets should be crucial to the tumor's malignant phenotype, easily measurable in readily obtained clinical samples, and yield a significant clinical response. Since tumorigenesis is a very complex process involving the interaction of multiple factors and pathways, target treatment offers hopes to maximize efficacy while minimizing toxicity and specificity. More importantly, treatment should have little or no toxicity on normal cells, thus representing the most promising aspect of cancer research (Friday BB, Adjei AA. Clin Cancer Res 2008; 14:342-346). A recent cancer study has provided exciting information. According to Xinhua News from London, Michael Way and fellow researchers from Cancer Research UK, have found a specific tumor-related protein, "Tes," that can prevent the diffusion of cancer cells through a Mena-dependent mechanism (, available as of December 28,2007). Research has found that a large amount of "Mena" protein is expressed in tumor tissues, helping cancer cells to diffuse throughout the body. Nevertheless, the protein "Tes" adheres to Mena, preventing it from reacting with another specific substance and rendering it ineffective, thus stopping Mena from helping cancer cells to diffuse somewhere else. However, there are large amounts of Mena in a tumor, so Tes is usually unable to stop the diffusion of cancer cells. In light of other research, Way explained that new study results will open the door to new directions in cancer therapy research. Way also noted that if drugs containing large amounts of the protein Tes are developed in the future, they could stop Mena's action in the body, and thus prevent the massive diffusion of cancer cells. Results of the study by Way and colleagues have been published in a recent issue of the journal Molecular Cell (Boëda B, Briggs DC, Higgins T, et al. Mol Cell 2007; 28:1071-1082).
This article was published in Drug Discov Ther and referenced in Journal of Pharmacognosy & Natural Products

Relevant Expert PPTs

Relevant Speaker PPTs

  • Diego Gallego García
    Complex ungulate and predator effects on foraging behaviour and acorn dispersal by Algerian mice: an experimental approach
    PPT Version | PDF Version
  • Chang-Hung Chou
    Diversified natural products in Rhododendron formosanum reveal allelochemical and pharmaceutical properties
    PPT Version | PDF Version
  • Yi-Cheng Hu
    Detection of a negative correlation between prescription of Chinese herbal products containing coumestrol, genistein or daidzein and risk of subsequent endometrial cancer among tamoxifentreated female breast cancer survivors in Taiwan between 1998 and 2008: A population-based study
    PPT Version | PDF Version
  • Carsten Worsoe
    The value of the “simulated study” as a tool to predict actual leachables in parenteral drug products
    PPT Version | PDF Version
  • Diane Paskiet
    Qualifi cation of extractables & leachables from container closure systems in drug products- Introduction to the Product Quality Institute (PQRI) recommendations
    PPT Version | PDF Version
  • Neervalur V Raghavan
    Systematic approach to development of aqueous drug formulation and drug device combination injectable products and challenges
    PPT Version | PDF Version
  • Jianfeng Hong
    Extractable and leachable studies of parenteral infusion and transfusion products
    PPT Version | PDF Version
  • Heidi Schalchli
    Natural products of Anthracophyllum discolor: Ligninolytic enzymes and antifungal volatile compounds
    PPT Version | PDF Version
  • Praveena T
    The structural and molecular insights into natural killer T cell receptor (NKT) and CD1d-glycolipid recognition
    PPT Version | PDF Version
  • Hazel Gorham
    Challenges in demonstrating biosimilarity and interchangeability of biosimilar products
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Hyeun-Jong Bae
    Onion waste recycling to produce the value added by-products
    PPT Version | PDF Version
  • Muscolo Adele
    Using agriculture waste and/or sulfur obtained from the residues of the desulfurization of natural gas and oil as fertilizer for productive purposes
    PPT Version | PDF Version
  • R. K. Pandey
    Community oriented integrated ecosystem approach for conservation and sustainable management of forest genetic resources: Challenges in biodiversity conservation in natural tropical forests of India
    PPT Version | PDF Version
  • Kazuo Yano
    Regulatory approval for autologous human cells and tissue products in the United States, the European Union, and Japan
    PPT Version | PDF Version

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version