alexa Test bed with force-measuring crank for static and dynamic investigations on cycling by means of functional electrical stimulation.
Pharmaceutical Sciences

Pharmaceutical Sciences

Clinical Pharmacology & Biopharmaceutics

Author(s): Gfhler M, Angeli T, Eberharter T, Lugner P, Mayr W,

Abstract Share this page

Abstract Cycling by means of functional electrical stimulation (FES) is an attractive training method for individuals with paraplegia. The physiological benefits of FES are combined with the psychological incentive of independent locomotion. In addition, cycling has the advantage in that the generated muscle forces are converted into drive power with relatively high efficiency compared to other means of locomotion, e.g., walking. For the design of an appropriate cycling device and the development of optimal stimulation patterns, it has to be investigated how the geometry for FES cycling, influenced by individual parameters of the FES-generated drive torques and the magnitude of variations among subjects with paraplegia, can be optimized. This study shows the design of a freely adjustable test bed with additional motor drive which allows static and dynamic measurements of force components and drive torque at the crank. Furthermore, the influence of geometry and various individual parameters on FES pedaling can be tested for each subject individually. A pedal path realized by a three-bar linkage that was optimized according to preliminary simulations further increases leg cycling efficiency. Safety precautions avoid injuries in case of excessive forces, e.g., spasms. Test results illustrate the application of the test bed and measurement routines. A test series with four paraplegic test persons showed that the presented static and dynamic measurement routines allow to provide optimal stimulation patterns for individual paraplegic subjects. While pedaling with these optimal stimulation patterns only negligible negative active drive torques, due to active muscle forces, were applied to the crank and sufficient drive power was generated to power a cycle independently. This article was published in IEEE Trans Neural Syst Rehabil Eng and referenced in Clinical Pharmacology & Biopharmaceutics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords