alexa Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction.
Engineering

Engineering

Journal of Biosensors & Bioelectronics

Author(s): Berridge MV, Herst PM, Tan AS

Abstract Share this page

Abstract Tetrazolium salts have become some of the most widely used tools in cell biology for measuring the metabolic activity of cells ranging from mammalian to microbial origin. With mammalian cells, fractionation studies indicate that the reduced pyridine nucleotide cofactor, NADH, is responsible for most MTT reduction and this is supported by studies with whole cells. MTT reduction is associated not only with mitochondria, but also with the cytoplasm and with non-mitochondrial membranes including the endosome/lysosome compartment and the plasma membrane. The net positive charge on tetrazolium salts like MTT and NBT appears to be the predominant factor involved in their cellular uptake via the plasma membrane potential. However, second generation tetrazolium dyes that form water-soluble formazans and require an intermediate electron acceptor for reduction (XTT, WST-1 and to some extent, MTS), are characterised by a net negative charge and are therefore largely cell-impermeable. Considerable evidence indicates that their reduction occurs at the cell surface, or at the level of the plasma membrane via trans-plasma membrane electron transport. The implications of these new findings are discussed in terms of the use of tetrazolium dyes as indicators of cell metabolism and their applications in cell biology. This article was published in Biotechnol Annu Rev and referenced in Journal of Biosensors & Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neurops[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords