alexa The 500 Dalton rule for the skin penetration of chemical compounds and drugs.
Surgery

Surgery

Reconstructive Surgery & Anaplastology

Author(s): Bos JD, Meinardi MM

Abstract Share this page

Abstract Human skin has unique properties of which functioning as a physicochemical barrier is one of the most apparent. The human integument is able to resist the penetration of many molecules. However, especially smaller molecules can surpass transcutaneously. They are able to go by the corneal layer, which is thought to form the main deterrent. We argue that the molecular weight (MW) of a compound must be under 500 Dalton to allow skin absorption. Larger molecules cannot pass the corneal layer. Arguments for this "500 Dalton rule" are; 1) virtually all common contact allergens are under 500 Dalton, larger molecules are not known as contact sensitizers. They cannot penetrate and thus cannot act as allergens in man; 2) the most commonly used pharmacological agents applied in topical dermatotherapy are all under 500 Dalton; 3) all known topical drugs used in transdermal drug-delivery systems are under 500 Dalton. In addition, clinical experience with topical agents such as cyclosporine, tacrolimus and ascomycins gives further arguments for the reality of the 500 Dalton rule. For pharmaceutical development purposes, it seems logical to restrict the development of new innovative compounds to a MW of under 500 Dalton, when topical dermatological therapy or percutaneous systemic therapy or vaccination is the objective.
This article was published in Exp Dermatol and referenced in Reconstructive Surgery & Anaplastology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords