alexa The anti-cancer drug, phenoxodiol, kills primary myeloid and lymphoid leukemic blasts and rapidly proliferating T cells.
Chemistry

Chemistry

Journal of Experimental Food Chemistry

Author(s): Herst PM, Davis JE, Neeson P, Berridge MV, Ritchie DS

Abstract Share this page

Abstract BACKGROUND: The redox-active isoflavene anti-cancer drug, phenoxodiol, has previously been shown to inhibit plasma membrane electron transport and cell proliferation and promote apoptosis in a range of cancer cell lines and in anti-CD3/anti-CD28-activated murine splenocytes but not in non-transformed WI-38 cells and human umbilical vein endothelial cells. DESIGN AND METHODS: We determined the effects of phenoxodiol on plasma membrane electron transport, MTT responses and viability of activated and resting human T cells. In addition, we evaluated the effect of phenoxodiol on the viability of leukemic cell lines and primary myeloid and lymphoid leukemic blasts. RESULTS: We demonstrated that phenoxodiol inhibited plasma membrane electron transport and cell proliferation (IC(50) 46 microM and 5.4 microM, respectively) and promoted apoptosis of rapidly proliferating human T cells but did not affect resting T cells. Phenoxodiol also induced apoptosis in T cells stimulated in HLA-mismatched allogeneic mixed lymphocyte reactions. Conversely, non-proliferating T cells in the mixed lymphocyte reaction remained viable and could be restimulated in a third party mixed lymphocyte reaction, in the absence of phenoxodiol. In addition, we demonstrated that leukemic blasts from patients with primary acute myeloid leukemia (n=22) and acute lymphocytic leukemia (n=8) were sensitive to phenoxodiol. The lymphocytic leukemic blasts were more sensitive than the myeloid leukemic blasts to 10 muM phenoxodiol exposure for 24h (viability of 23+/-4\% and 64+/-5\%, respectively, p=0.0002). CONCLUSIONS: The ability of phenoxodiol to kill rapidly proliferating lymphocytes makes this drug a promising candidate for the treatment of pathologically-activated lymphocytes such as those in acute lymphoid leukemia, or diseases driven by T-cell proliferation such as auto-immune diseases and graft-versus-host disease.
This article was published in Haematologica and referenced in Journal of Experimental Food Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords