alexa The bioavailability of polyphenols is highly governed by the capacity of the intestine and of the liver to secrete conjugated metabolites.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Silberberg M, Morand C, Mathevon T, Besson C, Manach C,

Abstract Share this page

Abstract BACKGROUND: After ingestion of a complex meal containing foods and beverages of plant origin, different polyphenols are likely to be simultaneously present in the intestine. However, almost nothing is known about their interactions and possible consequences on their bioavailability. AIM OF THE STUDY: The present study deals with the intestinal absorption and splanchnic metabolism of three polyphenols, genistein, hesperetin and ferulic acid (FA),when perfused in the small intestine alone or in combination, at different doses (15 and 120 microM). METHODS: The fate of polyphenols in the small intestine was studied using a rat in situ intestinal perfusion model. Polyphenols were analysed in perfusate, bile and plasma by HPLC. RESULTS: Whatever the perfused dose, the efficiency of the net transfer towards the enterocyte was similar for the three polyphenols and not significantly modified by any association between these molecules. However, FA largely differed from the two flavonoids by its low intestinal secretion of conjugates. When perfused at 15 microM, the secretion of conjugates back to the lumen represented 6.2\% of the net transfer into the enterocytes for FA compared to 25.5 and 20 \% for genistein and hesperetin respectively. Intestinal conjugation and secretion of conjugates back to the gut lumen varied with the dose of flavonoids: saturation of conjugation was observed for the highest dose or when a high dose of a second flavonoid was perfused simultaneously. Intensity of the biliary secretion substantially differed among tested polyphenols: 7.7\% of the net transfer for FA vs 50\% for genistein or hesperetin. The extent of the enterohepatic cycling of these polyphenols was proportional to the perfused dose and unaffected by the simultaneous presence of different compounds in the intestine. CONCLUSION: Genistein and hesperetin appeared less available than FA for peripheral tissues because of a high intestinal and biliary secretion of their conjugates. Moreover, data suggest that a high polyphenol intake may improve their bioavailability due to saturation of the intestinal secretion of conjugates. This article was published in Eur J Nutr and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords