alexa The C1 and C2 domains of protein kinase C are independent membrane targeting modules, with specificity for phosphatidylserine conferred by the C1 domain.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Johnson JE, Giorgione J, Newton AC

Abstract Share this page

Abstract Protein kinase C is specifically activated by binding two membrane lipids: the second messenger, diacylglycerol, and the amino phospholipid, phosphatidylserine. This binding provides the energy to release an autoinhibitory pseudosubstrate from the active site. Interaction with these lipids recruits the enzyme to the membrane by engaging two membrane-targeting modules: the C1 domain (present as a tandem repeat in most protein kinase Cs) and the C2 domain. Here we dissect the contribution of each domain in recruiting protein kinase C betaII to membranes. Binding analyses of recombinant domains reveal that the C2 domain binds anionic lipids in a Ca(2+)-dependent, but diacylglycerol-independent, manner, with little selectivity for phospholipid headgroup beyond the requirement for negative charge. The C1B domain binds membranes in a diacylglycerol/phorbol ester-dependent, but Ca(2+)-independent manner. Like the C2 domain, the C1B domain preferentially binds anionic lipids. However, in striking contrast to the C2 domain, the C1B domain binds phosphatidylserine with an order of magnitude higher affinity than other anionic lipids. This preference for phosphatidylserine is, like that of the full-length protein, stereoselective for sn-1, 2-phosphatidyl-L-serine. Quantitative analysis of binding constants of individual domains and that of full-length protein reveals that the full-length protein binds membranes with lower affinity than expected based on the binding affinity of isolated domains. In addition to entropic and steric considerations, the difference in binding energy may reflect the energy required to expel the pseudosubstrate from the substrate binding cavity. This study establishes that each module is an independent membrane-targeting module with each, independently of the other, containing determinants for membrane recognition. The presence of each of these modules, separately, in a number of other signaling proteins epitomizes the use of these modules as discreet membrane targets.
This article was published in Biochemistry and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords