alexa The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion.
General Science

General Science

Biological Systems: Open Access

Author(s): Konig S, Bguet A, Bader CR, Bernheim L, Konig S, Bguet A, Bader CR, Bernheim L

Abstract Share this page

Abstract In human myoblasts triggered to differentiate, a hyperpolarization, resulting from K+ channel (Kir2.1) activation, allows the generation of an intracellular Ca2+ signal. This signal induces an increase in expression/activity of two key transcription factors of the differentiation process, myogenin and MEF2. Blocking hyperpolarization inhibits myoblast differentiation. The link between hyperpolarization-induced Ca2+ signals and the four main regulatory pathways involved in myoblast differentiation was the object of this study. Of the calcineurin, p38-MAPK, PI3K and CaMK pathways, only the calcineurin pathway was inhibited when Kir2.1-linked hyperpolarization was blocked. The CaMK pathway, although Ca2+ dependent, is unaffected by changes in membrane potential or block of Kir2.1 channels. Concerning the p38-MAPK and PI3K pathways, their activity is present already in proliferating myoblasts and they are unaffected by hyperpolarization or Kir2.1 channel block. We conclude that the Kir2.1-induced hyperpolarization triggers human myoblast differentiation via the activation of the calcineurin pathway, which, in turn, induces expression/activity of myogenin and MEF2. This article was published in Development and referenced in Biological Systems: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version