alexa The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Marie PJ

Abstract Share this page

Abstract Recent progress has been made in our understanding of the functional role of the seven-transmembrane-spanning extracellular calcium-sensing receptor (CaSR) in bone cells. Both in vitro and in vivo data indicate that the CaSR is a physiological regulator of bone cell metabolism. The CaSR regulates the recruitment, differentiation and survival of osteoblasts and osteoclasts through activation of multiple CaSR-mediated intracellular signaling pathways in bone cells. This raises the possibility that the bone CaSR could potentially be targeted by allosteric modulators, either agonists (calcimimetics) or antagonists (calcilytics) to control bone remodeling. The therapeutic potential of CaSR agonists or antagonists in bone cells is however hampered by their effects on the CaSR in nonskeletal tissues. Rather, direct targeting of the bone CaSR may be of potential interest for the treatment of bone diseases. Targeting the bone CaSR using a bone-seeking CaSR agonist offers a potential mean to modulate bone cell metabolism. The development of drugs that preferentially target the CaSR and possibly other cation-sensing receptors in bone cells may thus be helpful for the treatment of osteoporosis. This article was published in Bone and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords