alexa The cardiac sodium pump: structure and function.
Cardiology

Cardiology

Journal of Hypertension: Open Access

Author(s): McDonough AA, Velotta JB, Schwinger RH, Philipson KD, Farley RA

Abstract Share this page

Abstract Cardiac sodium pumps (Na,K-ATPase) influence cell calcium and contractility by generating the Na+ gradient driving Ca++ extrusion via the Na+/Ca++ exchanger (NCX), and are the receptors for cardiac glycosides such as digitalis which increases cardiac contractility by decreasing the Na+ gradient driving Ca++ extrusion. There are multiple isoforms of the sodium pump expressed in the heart indicating the potential for isoform specific expression patterns, function and regulation. Regarding isoform expression patterns, human heart expresses alpha1, alpha2, alpha3, beta1 and a small amount of beta2. Within the human heart, alpha3, beta1 and NCX levels are 30-50\% lower in atria than ventricles, associated with increased sensitivity to inotropic stimulation. Distribution at the cellular level has been studied in the rat heart where both alpha1 and alpha2 are detected in the T-tubules along with NCX. Regarding isoform function, we focussed on human sodium pumps as cardiac glycoside receptors. A study of human sodium pump expressed alone (alpha1) or in combination (alpha1 with alpha2, or alpha1 with alpha2 and alpha3) in their native membranes aimed to determine whether different isoforms had distinct affinities for the cardiac glycoside ouabain by evaluating whether the ouabain binding data were best fit with a single site or two site model. The results indicated that the affinity of these human a subunit isoforms for ouabain is indistinguishable, and that changes in sensitivity to cardiac glycosides during heart failure are likely due to a decrease in the total number of pumps rather than a shift in expression to a more sensitive isoform. Regarding isoform regulation, we hypothesized that a primary decrease in cardiac Na,K-ATPase expression would be associated with a secondary increase in cardiac Na+/Ca++ exchanger expression as a homeostatic mechanism to blunt an increase in cell Ca++ stores (and visa versa with an increase in Na,K-ATPase). Supporting the hypothesis: in a rat model of renovascular hypertension, or after treatment with amiodarone there are 50\% decreases in alpha2 levels with 35-40\% increases in NCX levels in left ventricle, while in the transition from hypo- to hyperthyroid, there are increases in both alpha1 (2-fold) and alpha2 (8-fold) with decreases in NCX (0.45-fold). In comparison, in transgenic mice overexpressing NCX, there was no secondary change in Na,K-ATPase alpha1 or alpha2 levels indicating that primary changes in NCX do not drive secondary changes in Na,K-ATPase in the heart. This information provides the basis for addressing the significant gaps in our understanding of the physiologic, structural and homeostatic coupling between sodium pump isoforms and Na+/Ca++ exchangers in the heart and how coupling is related to control of cardiac contractility in health and disease.
This article was published in Basic Res Cardiol and referenced in Journal of Hypertension: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords