alexa The chemistry of novel xanthophyll carotenoids.


Journal of Nutrition & Food Sciences

Author(s): Jackson H, Braun CL, Ernst H

Abstract Share this page

Abstract Natural product isolates are typically not developed as drug candidates because of the difficulty in obtaining the desired stable molecular orientation (ie, stereochemistry), purity, and scale required to meet pharmaceutical industry standards. Recent advances in medicinal and process chemistry have played key roles in transforming a class of dietary natural products-carotenoids-into potential medical therapeutics. Carotenoids are natural pigments derived from the acyclic C40 isoprenoid lycopene, which can also be classified as a tetraterpene. Carotenoids are classified on their chemical composition as either carotenes or xanthophylls. There are 5 C40 carotenoids manufactured synthetically on an industrial scale, including lycopene, ss,ss-carotene, and canthaxanthin (which are achiral compounds); zeaxanthin (produced in enantiopure form, as the 3R,3'R enantiomer); and astaxanthin (produced as mixture of configurational isomers) for use as nutritional supplements and for animal feed additives in poultry farming and aquaculture that are essential for the animals' growth, health and reproduction. The xanthophyll astaxanthin shows pharmaceutical potential, but the configurational complexity has thus far made it difficult to synthesize an enantiopure form on a large scale. Astaxanthin has 2 identical asymmetric carbon atoms (position 3 and 3') and can therefore exist in 4 different configurations, providing 3 different configurational isomers: (3S,3'S) and (3R,3'R), which are enantiomers, and (3R,3'S) and (3S,3'R), which are identical (a meso form). An enantiopure industrial scale synthesis of astaxanthin (3S,3'S) has recently been developed by BASF AG. The desired stereochemistry (chirality) is introduced early in the synthetic process by a proprietary catalytic reaction using an intermediate of the existing technical astaxanthin production process as a substrate. By controlling this essential process, it is possible to produce pharmaceutical quality astaxanthin in quantities large enough to support drug development programs for medical therapies. This article was published in Am J Cardiol and referenced in Journal of Nutrition & Food Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • Food Processing & Technology
    October 02-04, 2017 London, UK
  • Public Health, Epidemiology & Nutrition
    November 13-14, 2017 Osaka, Japan
  • Food Processing & Technology
    December 05-07, 2016 San Antonio, USA
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version