alexa The chromatin code of fungal secondary metabolite gene clusters.
Genetics & Molecular Biology

Genetics & Molecular Biology

Fungal Genomics & Biology

Author(s): Gacek A, Strauss J

Abstract Share this page

Abstract Secondary metabolite biosynthesis genes in fungi are usually physically linked and organized in large gene clusters. The physical linkage of genes involved in the same biosynthetic pathway minimizes the amount of regulatory steps necessary to regulate the biosynthetic machinery and thereby contributes to physiological economization. Regulation by chromatin accessibility is a proficient molecular mechanism to synchronize transcriptional activity of large genomic regions. Chromatin regulation largely depends on DNA and histone modifications and the histone code hypothesis proposes that a certain combination of modifications, such as acetylation, methylation or phosphorylation, is needed to perform a specific task. A number of reports from several laboratories recently demonstrated that fungal secondary metabolite (SM) biosynthesis clusters are controlled by chromatin-based mechanisms and histone acetyltransferases, deacetylases, methyltransferases, and proteins involved in heterochromatin formation were found to be involved. This led to the proposal that establishment of repressive chromatin domains over fungal SM clusters under primary metabolic conditions is a conserved mechanism that prevents SM production during the active growth phase. Consequently, transcriptional activation of SM clusters requires reprogramming of the chromatin landscape and replacement of repressive histone marks by activating marks. This review summarizes recent advances in our understanding of chromatin-based SM cluster regulation and highlights some of the open questions that remain to be answered before we can draw a more comprehensive picture.
This article was published in Appl Microbiol Biotechnol and referenced in Fungal Genomics & Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords