alexa The cis-acting family of repeats can inhibit as well as stimulate establishment of an oriP replicon.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Leight ER, Sugden B

Abstract Share this page

Abstract Previously we have shown that the establishment of an oriP replicon is dependent on its epigenetic modification, which occurs in only 1 to 10\% of proliferating cells (E. R. Leight and B. Sugden, Mol. Cell. Biol. 21:4149-4161, 2001). To gain insights into the cis-acting requirements for the establishment of oriP replicons, we monitored the replication of oriP plasmid derivatives for several weeks following their introduction into cells. In EBNA-1-positive 143B and H1299 cells, plasmids containing only the region of dyad symmetry (DS) of oriP replicated but were lost more rapidly from cells than were oriP plasmids, demonstrating that the family of repeats (FR) of oriP acts in cis to stimulate replication in these cells. Unexpectedly, we found that the DS plasmid was established efficiently in 293/EBNA-1 cells, being lost at a rate of only 8\% per cell generation over 24 days posttransfection. However, plasmids containing the FR in addition to the DS of oriP replicated but were lost at a rate of approximately 30\% per cell generation in 293/EBNA-1 cells, indicating that the FR inhibits oriP's establishment in this cell line. FR's enhancement of transcription of a promoter in cis and FR's ability to inhibit replication fork movement do not account solely for oriP's inefficient establishment. In addition, DNA looping between FR and DS neither stimulates nor inhibits replication. Deletion of 11 EBNA-1 binding sites in the FR or replacement of the FR with DS sequences, however, does overcome the inhibitory activity of the FR, thereby allowing efficient establishment of the oriP derivative in 293/EBNA-1 cells.
This article was published in J Virol and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]micsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords