alexa The contribution of peroxynitrite generation in HIV replication in human primary macrophages.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Aquaro S, Muscoli C, Ranazzi A, Pollicita M, Granato T,

Abstract Share this page

Abstract BACKGROUND: Monocytes/Macrophages (M/M) play a pivotal role as a source of virus during the whole course of HIV-1 infection. Enhanced oxidative stress is involved in the pathogenesis of HIV-1 infection. HIV-1 regulatory proteins induce a reduction of the expression and the activity of MnSOD, the mitochondrial isoform leading to a sustained generation of superoxide anions and peroxynitrite that represent important mediators of HIV-1 replication in M/M. MnTBAP (Mn(III)tetrakis(4-benzoic acid)porphrin chloride), a synthetic peroxynitrite decomposition catalyst, reduced oxidative stress subsequent to peroxynitrite generation. RESULTS: Virus production was assessed by p24 ELISA, western blot, and electron microscopy during treatment with MnTBAP. MnTBAP treatment showed a reduction of HIV-1 replication in both acutely and chronically infected M/M: 99\% and 90\% inhibition of p24 released in supernatants compared to controls, respectively. Maturation of p55 and p24 was strongly inhibited by MnTBAP in both acutely and chronically infected M/M. EC50 and EC90 are 3.7 (+/- 0.05) microM and 19.5 (+/- 0.5) microM, in acutely infected M/M; 6.3 (+/- 0.003) microM and 30 (+/- 0.6) microM, in chronically infected M/M. In acutely infected peripheral blood limphocytes (PBL), EC50 and EC90 are 7.4 (+/- 0.06) microM and of 21.3 (+/- 0.6) microM, respectively. Treatment of acutely-infected M/M with MnTBAP inhibited the elevated levels of malonildialdehyde (MDA) together with the nitrotyrosine staining observed during HIV-1 replication. MnTBAP strongly reduced HIV-1 particles in infected M/M, as shown by electron microscopy. Moreover, in presence of MnTBAP, HIV-1 infectivity was reduced of about 1 log compared to control. CONCLUSION: Results support the role of superoxide anions in HIV-1 replication in M/M and suggest that MnTBAP may counteract HIV-1 replication in combination with other antiretroviral treatments.
This article was published in Retrovirology and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords